If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-34x-84=0
a = 5; b = -34; c = -84;
Δ = b2-4ac
Δ = -342-4·5·(-84)
Δ = 2836
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2836}=\sqrt{4*709}=\sqrt{4}*\sqrt{709}=2\sqrt{709}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-34)-2\sqrt{709}}{2*5}=\frac{34-2\sqrt{709}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-34)+2\sqrt{709}}{2*5}=\frac{34+2\sqrt{709}}{10} $
| 5+3(10x+5)=4-3(8x-2) | | 5x+6=4x+26 | | z+65=3z-65 | | 1,8t+32=T | | 2(x+6)=-x-9 | | 5·x=90 | | 3.2g+2=1.2g+6 | | 2g+5=-5 | | 7-2p=17 | | 2x+x/3-2=5x-2(3x+4/3) | | A2=a1+3=-8+3 | | .6n-4n=68 | | x+(2x-57)=90 | | 4/3x+2=18 | | -23x=115 | | -2(-4h-19)=-3(6+2h) | | 4/3+x+2=18 | | 2(x+70)=140 | | 25-4(2x-3)=16+(5x-4)×2 | | x*x-x+x+9=-9x | | (2x−7)(−3x−12)=0 | | 7z=8z-2 | | -5x-7=-1 | | 4x+7x-2+5x-2=180 | | 3/4=j-2/4 | | 2a-4=5a-40 | | m+19=11 | | 16x−x^2−48=0 | | 19=-3n-4n-2 | | 4x+7=-66+9x | | 6a-64=7a-77 | | 2(20x-2=36 |